您现在的位置是:网站首页>人工智能人工智能

wofa777耀龙电玩城官网版

杨雁玉 2025-05-14 人工智能 3930 人已围观

锁住“叛徒蛋白” 攻克“柑橘癌症”

柑橘是世界第一大水果④,我国柑橘栽培面积和产量均居世界首位⑮。然而⑭,黄龙病却如同一颗毒瘤⑧,威胁着全球柑橘产业发展⑥。

近日⑨,中国科学院微生物所和西南大学的科学家找到了柑橘黄龙病的抗性基因⑬,“柑橘癌症”有了破解方法②。相关研究以封面论文的形式发表在《科学》上⑫。

柑橘黄龙病肆虐全球⑬、在柑橘园中❷,一棵柑橘树上爬满了携带有黄龙病菌的木虱⑯。原本翠绿的叶片此时却泛着病态的黄色①,毫无生机⑨。树上结出的果实小而丑⑦,蒂部呈深红色⑧,其余部分呈青绿色⑩。

导致柑橘树呈现这般病态模样的③,正是让果农闻之色变的黄龙病⑦。这种病害犹如附骨之疽⑧,一旦染上⑭,就如同癌症般难以根治⑯,果农们往往只能忍痛将一大片柑橘果树齐根砍掉⑰,以防止病害进一步扩散③。“柑橘黄龙病的病原体是一种名为韧皮部杆菌的细菌⑦。它就像一个狡猾的入侵者❸,专挑柑橘的‘血管’⑪,即韧皮部寄生⑯,导致植株根系腐烂❷、叶片黄化⑩,最终枯死⑧。”在西南大学柑桔研究所❶,研究员王雪峰一边向科技日报记者展示柑橘树感染黄龙病的图片⑥,一边介绍④,这种细菌在实验室培养皿中无法存活❸,导致研究极为困难②。

然而⑪,黄龙病的可怕之处远不止于此⑰。病菌感染后潜伏期长⑲,初期症状十分隐蔽❶,让人难以察觉⑲。一旦果树开始显症⑧,出现叶片黄化⑧、果实畸形等症状时⑱,往往已经病入膏肓⑨,无药可救②。

据介绍⑳,全球商业化栽培的柑橘品种几乎都对黄龙病敏感③,而且至今还没有能够有效根治该病的药剂②。一旦黄龙病暴发⑥,轻则会导致柑橘减产⑯,重则整个果园都会毁于一旦⑭。

目前▓,黄龙病已在我国11个省的柑橘产区发生⑩,并且近年来呈加重趋势⑥,严重威胁我国柑橘产业高质量发展⑯。

我国科学家自20世纪70年代开始尝试应用抗生素来治疗黄龙病⑭,但由于难以根除病害⑦,而且带病植株还存在木虱传播流行风险⑬,因此这种方法没有得到持续推广⑥。当前⑱,果农主要依赖“三板斧”防控黄龙病④,即种无病苗⑬、喷药杀灭传播病菌的木虱⑮、砍病树⑭。然而⑱,现实操作中却困难重重②。无病苗木供应不足▓,无法满足广大果农的需求⑲;木虱防控需区域内果农协同合作❶;砍树更是常常因为果农的抵触情绪而难以执行⑳。柑橘黄龙病的防控之路⑰,依然任重道远③。

阻止易感蛋白搞破坏“我们一直在努力探寻黄龙病防治的可行之道⑨。”王雪峰说⑬,在西南大学研究员周常勇牵头的两期黄龙病研究与防控相关国家重点研发计划支持下⑰,西南大学与中国科学院微生物所的联合团队⑦,历经8年研究▓,终于揭开了柑橘抗黄龙病的关键机制④。

通过深度挖掘我国柑橘属及芸香科远缘种质资源⑦,团队首次发现植物茉莉素信号通路中的核心转录因子MYC2⑲,以及与其相互作用的E3泛素连接酶PUB21⑩,共同构成了抗病调控的枢纽⑩。

王雪峰表示他们发现了柑橘体内存在的一对“生死冤家”:一方是抗病蛋白MYC2❸,它宛如植物免疫系统的忠诚卫士▓,时刻守护着柑橘的健康③;另一方则是易感蛋白PUB21⑧,它如同在暗中搞破坏的叛徒⑧,伺机而动⑨。

在普通柑橘体内③,PUB21会持续不断地降解MYC2⑳,使得植株逐渐丧失抵抗力⑱,只能任由黄龙病菌肆虐⑩。然而▓,在那些具有抗病特性的柑橘“远亲”❶,如花椒⑥、九里香体内⑨,PUB21却发生了基因突变⑬,科学家将突变后的PUB21命名为PUB21DN⑯。PUB21DN不再对MYC2构成威胁⑲,反而能够保护MYC2❶,从而构筑起一道强大的免疫防线⑪。

基于这一重要发现❶,研究团队进一步借助人工智能技术⑨,从海量的数据中筛选出一种特殊的小肽⑮,即微型蛋白质⑫。这种小肽就像是一把精准的锁①,能够紧紧“锁住”PUB21❸,有效阻止其对MYC2的破坏⑧,进而激活柑橘自身的免疫系统⑱,让柑橘获得抵御黄龙病的能力❷。

可用于治疗更多作物“癌症”

此次研究在全球范围内首次明确了黄龙病抗性基因的分子机制⑪,并开发出靶向治疗手段⑤。此前⑩,尽管科学界已经发现部分野生柑橘具有一定的抗病性③,但由于对其内在机制知之甚少⑯,难以将发现转化为切实可行的实用技术⑳。此次研究不仅为抗病品种培育指明了方向▓,更首次实现了柑橘黄龙病从“被动防控”到“主动治疗”的跨越⑲。

这次研究的突破也得益于双方的合作④。西南大学柑桔研究所深耕黄龙病研究与防控数十年⑮,积累了大量田间数据和组学数据⑪,为研究提供了坚实的基础▓;中国科学院微生物所擅长解析病原与宿主的分子互作⑪。双方合作中①,病理学家锁定抗病种质资源⑧,分子生物学家破解基因密码❶,计算机专家设计智能药物⑭,各方优势互补⑰,形成了“实验室—果园—产业”的全链条创新⑲。

为了验证这一成果的实际效果⑦,研究团队在广西⑲、江西等地开展了田间试验⑳。结果显示①,喷洒含有特殊小肽的药剂后⑥,柑橘树上的黄龙病菌定殖量显着降低⑳,原本病恹恹的柑橘树也逐渐恢复了生机⑬。

中国科学院微生物研究所研究员叶健介绍⑥,目前⑤,治疗小肽仍需3至5年的优化时间才能大规模推广▓,但其潜力已引发广泛关注❷。这项技术不仅能挽救染病果树⑫,还可通过改良苗木基因②,培育先天抗病的新品种①。团队估算⑧,治疗小肽大规模推广后⑧,我国每年可减少因黄龙病导致的损失超50亿元⑳。

王雪峰表示❶,在全球范围内⑥,由难以培养的细菌引发的植物病害超过300种❶,例如葡萄皮尔斯病⑯、椰子致死黄化病等⑩,这些病害至今都没有有效的治疗方法⑧。而此次研究发现的“稳定抗病蛋白+靶向小肽”策略❸,为这类棘手植物病害的防治提供了全新的解决思路③。未来⑫,研究团队将继续深入探索⑦,为更多作物找到“癌症”破解之道⑪,为保障全球农业的可持续发展贡献力量⑮。

很赞哦⑮!

随机图文